
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
THESIS 

 

Approved for public release; distribution is unlimited. 

SECURITY OF SENSOR NETWORKS 
 

by 
 

Hong-Siang Teo 
 

June 2006 
 
 

 Thesis Advisor:   John McEachen 
 Second Reader: Weilian Su 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
June 2006 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:  Security of Sensor Networks 
 

6. AUTHOR(S) Teo, Hong-Siang 

5. FUNDING NUMBERS 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
      AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
      This thesis discusses the security of sensor networks. First, an overview of the security architectures 
of two dominant implementations of sensor networks in the market today is presented: the TinyOS stack 
and the IEEE 802.15.4 stack. Their similarities and differences are explored and their strength and 
limitations are discussed. Where applicable, comparisons are made with IEEE 802.11 Wireless LAN to 
highlight improvements and lessons learned. It is pointed out that in general, IEEE 802.15.4 offers 
better security, but replay protection is effectively missing in today’s implementations and access 
control is poorly implemented.. Consequently, TinyOS is still the better option for devices with severe 
resource constraints. Finally, as a tool to aid in the security analysis of sensor network, the design and 
implementation of a TinyOS sniffer is presented and captured frames for a simple sensor network 
application are analyzed for the purpose of validation. 
 
 

15. NUMBER OF 
PAGES  

69 

14. SUBJECT TERMS  
Sensor Network, Security, Sniffer  

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited. 
 
 

SECURITY OF SENSOR NETWORKS 
 

Hong-Siang Teo 
DSO National Laboratories, Singapore 
M.Eng., Imperial College, UK, 1997 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
June 2006 

 
 
 

Author:  Hong-Siang Teo 
 

 
 
Approved by:  John McEachen 

Thesis Advisor 
 
 

 
Weilian Su 
Second Reader 

 
 

 
Jeffrey B. Knorr 
Chairman, Department of Electrical and Computer Engineering 
 



 iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
THIS PAGE INTENTIONALLY LEFT BLANK 



 v 

ABSTRACT 
 

 

 This thesis discusses the security of sensor networks. First, an overview of the 

security architectures of two dominant implementations of sensor networks in the market 

today is presented: the TinyOS stack and the IEEE 802.15.4 stack. Their similarities and 

differences are explored and their strength and limitations are discussed. Where 

applicable, comparisons are made with IEEE 802.11 Wireless LAN to highlight 

improvements and lessons learned. It is pointed out that in general, IEEE 802.15.4 offers 

better security, but replay protection is effectively missing in today’s implementations 

and access control is poorly implemented. Consequently, TinyOS is still the better option 

for devices with severe resource constraints. Finally, as a tool to aid in the security 

analysis of sensor network, the design and implementation of a TinyOS sniffer is 

presented and captured frames for a simple sensor network application are analyzed for 

the purpose of validation. 
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EXECUTIVE SUMMARY 
 
 

Security in sensor networks is an active but wide-open research field. Past 

experiences with other wireless technologies have shown that security will be an 

important factor in deciding the viability of sensor networks. But sensor networks have 

entirely different physical and network characteristics from conventional wireless 

networks, so they pose unique security challenges where traditional security techniques 

cannot be applied directly. 

There are two dominant sensor network implementations in the market today, 

namely TinyOS and IEEE 802.15.4. TinyOS targets devices where energy and 

computation power are significant resource constraints. IEEE 802.15.4 takes a more 

modular approach to its design, and is suited for a variety of devices and applications. 

Currently TinyOS is more popular. But the formal adoption of the IEEE 802.15.4 

standard should accelerate its acceptance in the sensor network community. 

In this thesis, the security architectures of TinyOS and IEEE 802.15.4 are 

examined. The focus is on link layer security because, like other wireless networking 

technologies, the threat of interception by an adversary is always present. The security 

services they provide are described in terms of access control, message confidentiality, 

message integrity, and replay protection.  

It is pointed out that in general, IEEE 802.15.4 offers higher assurance in terms of 

cryptographic strength, message integrity, and information leakage from IV reuse. 

TinyOS applications will need robust re-keying support and countermeasures against 

forgery attempts to make up the difference.  But they both lack effective peer-level access 

control and replay protection – both important aspects of sensor network security. 

For resource-limited sensor networks, TinyOS is still the better choice. For 

military applications where security and performance needs dominate, a hybrid 

TinyOS/IEEE 802.15.4 system would be ideal. Given the open source nature of the 

TinyOS project, it is conceivable that TinyOS can be adapted to leverage on IEEE 

802.15.4-compliant hardware for its link layer security, instead of relying on TinySec – 
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TinyOS’s own link layer security implementation. TinyOS packets can be encapsulated 

inside IEEE 802.15.4 frames, just like TCP/IP packets are encapsulated inside IEEE 

802.11 frames. In this way, sensor network applications can be built that enjoy the best of 

both worlds – the mature and optimized environment of TinyOS, and the superior link 

layer security offered by IEEE 802.15.4. 

The design and implementation of a TinyOS Sniffer tool is presented. A sniffer is 

the quintessential tool for modern day network and security analysis. But such a tool is 

presently lacking in today’s sensor network development kits. The current design is based 

on existing sensor network hardware and software components to enable a low-cost 

sniffer implementation. The sniffer has also been designed to be easily extensible in 

terms of functionalities. Captured frames for a simple sensor network application are 

analyzed for the purpose of validation. 

The following are recommended areas for further research: 

• Improve the functionality of the TinyOS sniffer. Areas of improvement 

include tighter integration of the Sniffer with the mote hardware, and 

additional output modes for packet data such as the XML format. 

• Integrating TinyOS with 802.15.4-compliant hardware, with support for peer-

level access control and replay protection. 
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I. INTRODUCTION  

A. INTRODUCTION 
Security in sensor networks is an active but wide-open research field. Initial 

research efforts in sensor networks have understandably been focused on functionality, 

stability, and cost effectiveness. But past experiences with other wireless technologies 

have shown that security will be an equally important factor in deciding the viability of 

sensor networks. In order for a sensor network to be resilient to the myriad of network 

attacks that it will inevitably face, security must pervade its entire system design. The 

good news is that the sensor network is still very much in its infancy, so there are ample 

opportunities for researchers to ensure that security is designed into sensor networks, and 

that it is done right. The bad news, however, is that since sensor networks have entirely 

different physical and network characteristics from conventional wireless networks, they 

pose unique security challenges where traditional security techniques cannot be applied 

directly. New and innovative approaches must be sought. 

 

B. THESIS OBJECTIVE 
This thesis examines the current state of sensor network security, assesses its 

adequacy, and identifies potential areas of research. The main objective is to understand 

the design and implementation issues in realizing a secure deployable sensor network. A 

secondary objective is the design and development of a sensor network packet sniffer. A 

sensor network packet sniffer will assist in further analyzing and validating some of the 

issues identified in this thesis. 

 

C. RELATED WORK 
Researchers have known about the challenges facing sensor network security 

[1,2,3]. These include key establishment and trust setup, secrecy and authentication, 

privacy of sensed data, denial-of-service, secure routing, node capture, eavesdropping, 

and malicious use of the technology. For denial of service, researchers have found that a 

variety of attacks can be mounted at the physical, link, network and transport layers [4]. 
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New classes of routing attacks, called sinkhole and HELLO floods, have been devised 

[5]. In addition, a variety of ad-hoc and peer-to-peer networking attacks, like the Sybil 

attack [6], can be adapted into powerful attacks against sensor networks [7]. Commercial 

tools are available for packet sniffing of a IEEE 802.15.4 network [8]. 

Researchers have studied the security of IEEE 802.15.4, and a few problems have 

been found [9]. These include lack of integrity protection for acknowledgement packets, 

key management issues, and lack of support for group keying models. Nonetheless, they 

conceded that the 802.15.4 security is fundamentally sound, and that proper use of the 

security API can lead to secure applications. SNEP (Secure Network Encryption 

Protocol), part of the SPINS [10] (Secure Protocols for Sensor Networks) framework, 

appears to be an alternative security architecture specifically targeted at sensor networks. 

But SNEP was unfortunately not fully specified nor fully implemented. 

 

D. ORGANIZATION 
The first step to a secure deployable sensor network is to understand the security 

from the ground up. Chapters II and III of the thesis examine the link layer security 

offered by the two dominant sensor network implementations in the market today, 

namely TinyOS and IEEE 802.15.4. Like other wireless networking technologies, the 

communications of sensor networks do not enjoy the benefits of physically protected data 

links, so the threat of interception by an adversary is always present. Hence, link layer 

security is an especially important consideration for wireless sensor networks. Chapter IV 

discusses the similarities and differences in the security architecture of TinyOS and IEEE 

802.15.4, as well as their strength and limitations. Where applicable, comparisons are 

made with IEEE 802.11 Wireless LAN to highlight improvements and lessons learnt. 

Next, the design and implementation of a sensor network sniffer is described in 

Chapters V and VI. A sniffer is the quintessential tool for network analysis. But such a 

tool is presently lacking in today’s sensor network development kits. The current design 

is based on existing sensor network hardware and software components to enable a low-

cost sniffer implementation. Captured frames from a simple sensor network application 

are analyzed for the purpose of validation. 
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Finally, Chapter VII concludes with a summary of the key points of this thesis, 

and recommended areas for further research.  
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II. SECURITY ARCHITECTURE OF IEEE 802.15.4 

A. OVERVIEW 
The IEEE 802.15.4 standard [11] (802.15.4) is also known as the Low Rate 

Wireless Personal Area Network (LR-WPAN). It is designed to be a low-cost, low-

complexity and short-range wireless communication network for applications with 

limited power and relaxed throughput requirements. Strictly speaking, 802.15.4 defines 

protocols not specifically for sensor networks, but for Wireless Personal Area Networks 

(WPAN). It is part of the WPAN family of standards that covers a personal operating 

space (POS) of typically 10 meters. But it has begun to attract strong interest from the 

sensor network community in using these protocols for sensor networks. 

An 802.15.4 network can operate in either a star or peer-to-peer (mesh) topology, 

as illustrated in Figure 1. Each node in the network can either be a Full-Function Device 

(FFD), or a Reduced-Function Device (RFD).  

The FFD embodies all the functionalities of an 802.15.4 device. It can operate in 

three roles: a PAN coordinator, a coordinator, or a device. An 802.15.4 network must 

include at least one FFD acting as the PAN coordinator in order for the network to form. 

On the other hand, an RFD is an extremely simple device that can talk only to an FFD. 

RFDs are useful for say, a light switch or a passive infrared sensor. Thus, in a typical 

sensor network, the “leaves” of the network can be visualized to be either RFDs or FFDs, 

while the gateway or router is an FFD. 

Each device in the 802.15.4 network can by addressed by either a 64-bit extended 

address, or a 16-bit short address. The former is the global unique address of the device, 

analogous to the 48-bit Ethernet address of network interface cards. The latter is a 

convenient shorthand in a network-specific setting. 
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Figure 1: Illustration of a Zigbee/802.15.4 network. The green links and nodes 
show the star topology, while the blue links and nodes show the mesh topology. 
Through appropriate routing nodes, star and mesh networks can interoperate. 

Source: [From 12]. 
 

B. RELATIONSHIP WITH ZIGBEE 
Zigbee [13] is often spoken in the same breath as 802.15.4. They are not the same, 

although Zigbee is designed to work in tandem with 802.15.4. Their relationship is 

illustrated in Figure 2. 

802.15.4 is based on the classic Open Systems Interconnection (OSI) seven-layer 

model [14], where it defines the physical layer and the media access control layer. The 

physical layer contains the radio frequency transceiver along with its low-level control 

mechanism. The media access control layer forms part of the data link layer, and provides 

access to the physical channel for all types of transfer. This is the typical way that recent 

IEEE 802.x standards are specified. Its purpose is to provide a common and interoperable 

communications platform that higher layer protocols can leverage on. 

The higher layer protocols are defined by specific applications such as Zigbee. 

Zigbee builds on the 802.15.4’s physical and medium access control layers with a 

network layer and an application layer that manage routing, discovery, security, and other 

network-level functions. Of note, the security services provided by Zigbee include 

methods for key establishment, key transport, frame protection, and device management.  
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Figure 2: Relationship between Zigbee and 802.15.4. Note the separation point 
in the medium access control layer. 

Source: [From 12]. 
 

As such, the security provided by 802.15.4 can be considered to be link layer 

security primarily aimed at node-to-node security, while the security provided by Zigbee 

can be considered application layer security primarily aimed at end-to-end security. 

Zigbee security is thus analogous to SSH [15], SSL/TLS [16] and IPSec [17].  

In section 2.4 of his book [18], Stallings noted that with end-to-end security, the 

user data is secure, but the traffic pattern is not, since packet headers must be transmitted 

in the clear for the packet to be successfully routed to the destination. User data is 

therefore subjected to traffic analysis [19]. To achieve greater security, both link and end-

to-end security are needed. Hence, 802.15.4 security and Zigbee security should 

complement but not replace each other. 

Karlof, Sastry and Wagner [20] opined that the dominant traffic pattern in sensor 

networks is not end-to-end communication, but many-to-one communication, where in-

network processing such as aggregation and duplicate elimination is used to reduce 

network traffic and save energy. Since in-network processing requires each intermediate 

node to access, modify and suppress the contents of messages, the more appropriate 

security mechanism to study should be node-to-node security instead of end-to-end  
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security. For this reason, the analysis of the security of Zigbee stack is outside the scope 

of this thesis. Nonetheless, it is recognized that end-to-end security will still have value 

for security services like keying. 

The following sections discuss key components of the 802.15.4 security 

architecture. 

 
C. SECURITY SERVICES 

The International Telecommunication Union (ITU) Telecommunication 

Standardization Section (ITU-T) Recommendation X.800 [21] defines four classes of 

layer 2 security services between communicating open systems, namely authentication, 

access control, message confidentiality, and message integrity. 802.15.4 uses the 

following terms for its security services: access control, data encryption, frame integrity, 

and sequential freshness. In this thesis, the more conventional terms of access control, 

message confidentiality, message integrity, and replay protection, respectively are 

adopted. 

802.15.4 provides all four of these services, but only three of them are specified in 

the standard, namely access control, message confidentiality and message integrity. Peer 

entity authentication is embedded in message integrity. In addition, an optional fourth 

security service, replay protection, is provided by 802.15.4, although one may say that it 

can be considered part of message integrity too.  

1. Access Control 
Access control provides the ability for a device to select the other devices with 

which it is willing to communicate. At the same time, it also prevents unauthorized 

parties from participating in the network. In 802.15.4, access control is implemented by 

an access control list (ACL) that each device maintains for the nodes that it is willing to 

communicate with. The ACL is explained in more details later. 

2. Message Confidentiality 
Message confidentiality means keeping information secret from unauthorized 

observation. In 802.15.4, message confidentiality is achieved through a symmetric cipher, 

using a key shared by a group of devices (typically stored as the default key) or using a 

key shared between two peers (typically stored in an individual ACL entry). Message 
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confidentiality may be provided on beacon payloads, command payloads, and data 

payloads, but not on acknowledgement payloads. 

3. Message Integrity 
Message integrity means protecting the data from unauthorized modification. In 

802.15.4, message integrity is achieved by using a message authentication code (MAC). 

802.15.4 refers to the message authentication code as a message integrity code (MIC) in 

order to differentiate it from the media access control layer, which also abbreviates to 

MAC. This is beginning to become the convention used in recent IEEE standards. In this 

thesis, however, the cryptographic convention of using MAC as an abbreviation for 

message authentication code is adhered to. To avoid any confusion, media access control 

is not abbreviated.  

 A MAC is a key-dependent one-way hash function [22] that is applied over the 

entire packet, including the packet headers. The key used to compute the MAC is the 

same key used for data confidentiality. Since the MAC depends on the key, the MAC 

further provides peer entity authenticity. The MAC may be provided on beacon frames, 

command frames, and data frames, but not on acknowledgement frames. Note the 

distinction between frame and payload. Encryption is applied to the packet payload, 

while MAC is applied to the entire frame, including the headers. 

4. Replay Protection (optional) 
Replay protection uses an ordered sequence of inputs to detect and reject frames 

that have been replayed. The sender assigns a monotonically increasing sequence number 

to every outgoing packet, and the receiver rejects packets with sequence numbers smaller 

than the one it has already received. A receiver can optionally enable replay protection 

when encryption is enabled. 

 
D. SECURITY SUITES 

802.15.4 provides the security services via a set of pre-defined security suites (see 

Table 1). These security suites will only be used when the application specifies that the 

device shall operate in secured mode. 

A security suite consists of a set of operations to perform on medium access 

control layer frames. The security suite name indicates the symmetric cryptography 
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algorithm, mode, and integrity code bit length. The encryption algorithm used is 

Advanced Encryption Standard [23] (AES). The only mandatory security suite that each 

device that implements security shall support is the AES-CCM-64 security suite [11]. 

  

 Security Services  

Security suite Access 
control 

Message 
encryption 

Message 
integrity 

Replay 
protection Description 

NONE     No security 

AES-CTR X X  X 
Encryption only with 
AES with counter (CTR) 
mode 

AES-CCM-128 X X X X 

AES-CCM-64 X X X X 

AES-CCM-32 X X X X 

Encryption with AES 
with counter mode, and 
authentication with CBC-
MAC [24] 

AES-CBC-MAC-128 X  X  

AES-CBC-MAC-64 X  X  

AES-CBC-MAC-32 X  X  

Authentication only with 
CBC-MAC 

Table 1: IEEE 802.15.4 security suites. The only mandatory security suite that 
each device that implements security shall support is AES-CCM-64 [11]. 
 

E. ACCESS CONTROL LIST (ACL) 
The media access controller maintains a single default ACL entry and an ACL 

table. The default ACL entry is known by every device in the PAN and is used in 

situations in which the device needs to communicate with a second device or with 

multiple devices that it may not know individually. It is analogous to a broadcast or group 

key. This default ACL entry indicates whether default security is to be applied to devices 

not in the ACL, and if so, the default security suite and security material to use. The 

default security suite specified in the standard is none, with an empty string for the 

security material. 

Individual ACL entries in the ACL table are used in situations in which the device 

shares a key with a specific known device. This implies a trusted relationship has been 

established between these two devices. Therefore, each ACL entry corresponds to a 
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trusted device, and consists of its PAN identifier, its 64 bit extended address, its 16 bit 

short address (or 0xffff if this address is not known), and its security suite and related 

security material. When replay protection is enabled, the security material includes a high 

water mark of the most recently received sequence number. There can be a maximum of 

255 entries in the ACL table. 

 

F. MODE OF OPERATION 
The media access controller can be set in one of three security modes, namely 

unsecured mode, ACL mode, and secured mode. Unsecured mode is self-explanatory. 

ACL mode does not perform any cryptographic operations on the frames, but provides 

only a means for the device to indicate to the application whether the frame comes from a 

device in the ACL table. Secured mode utilizes the ACL functionality and also provides 

cryptographic protection on incoming and outgoing frames. 

When the media access controller receives a packet from the application to send 

in secured mode, the ACL is consulted to find an entry that matches the destination 

address of the packet. If there is a match, the security material in the ACL entry is used to 

encrypt and/or authenticate the packet, according on the security suite specified in the 

ACL entry. If there is no match, then the default ACL entry is checked to see if default 

security is to be applied. If this setting is true, then the default security suite and security 

material is used to process the packet. Note that this can mean no security. Otherwise, the 

media access controller reports an error to the application. 

On packet reception, the media access controller consults a flag in the packet 

header to determine if any of the security suites have been applied to the packet. If no 

security has been applied, the packet is passed on to the application as is. Otherwise, a 

process similar to the sending process is used, but this time based on the source address. 

If replay protection is enabled, the media access controller also verifies that the sequence 

number of the packet is greater than the one stored at the corresponding ACL entry. If it 

is, the ACL entry is updated with the new sequence number as the new high water mark. 

Otherwise, an error is reported to the application. 
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G. NONCE OR INITIALIZATION VECTOR (IV) 
An important aspect of data confidentiality is semantic security [25]. It means that 

besides preventing plaintext recovery, the encryption scheme should also prevent 

adversaries from learning even partial information about the plaintext. One implication of 

semantic security is that encrypting the same plaintext twice must result in two different 

ciphertexts. A common technique to achieve this is to use a nonce, or more commonly 

called the initialization vector (IV), as a side input to the cipher in addition to the key. So 

long as the IV is unique for each encrypted packet, then no two packets can be encrypted 

to the same ciphertext, even if they have the same data, which is not an uncommon 

situation in computer networking. Since the receiver must use the IV to decrypt 

messages, the security of most encryption schemes do not rely on the IV being secret. 

Hence, the IV is typically sent in the clear with the encrypted packet. The IV is often a 

monotonically increasing large number. Another strategy to generate IV is to randomly 

choose from an n-bit value. But by the birthday paradox, it is likely that the first 

repetition will occur after 2n/2 packets have been sent. On the other hand, if the IV is 

chosen from an n-bit counter, then the first repetition will not occur before 2n+1 packets 

have been sent. Hence, the later strategy is often the more popular. 

In 802.15.4, the IV is constructed from the following data: a static flags field, the 

64 bit extended address, a 4 byte frame counter, a 1 byte key counter, and a 2 byte block 

counter (See Figure 3). 

 

1 byte 8 bytes 4 bytes 1 byte 2 bytes 

Flags Source Address Frame counter Key Counter Block Counter 

Figure 3: Format of the 802.15.4 IV for AES-CTR security suite [11]. 
 
There is a cryptographic requirement that the same IV must not be used to encrypt 

two different packets with the same key. Otherwise, it is possible to recover information 

about both plaintext messages [26]. Given two ciphertexts produced with the same 

(IV,K) pair: 
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C1 = AES(IV,K) ⊕ P1 

C2 = AES(IV,K) ⊕ P2 

C1 ⊕ C2 = AES(IV,K) ⊕ P1 ⊕ AES(IV,K) ⊕ P2 = P1 ⊕ P2 

 

Given the well-known structure of network messages, recovering the XOR of the 

two plaintexts makes it significantly easier to recover the two plaintexts. 

The frame counter and key counter are key (pun unintended) in ensuring that this 

will not be the case. The frame counter is maintained by the media access controller, 

while the key counter is controlled by the application. The media access controller 

increments the frame counter for every encrypted packet sent. When the frame counter 

reaches the maximum value and rolls over, the media access controller notifies the 

application with an error. The application must increment the key counter to continue 

encrypting packets.  

When both the frame counter and key counter are exhausted, no further 

encryption is possible with this key, until a new key is established. 

Instead of sending the entire IV with the encrypted payload, only the frame 

counter and key counter are pre-pended to the encrypted payload and sent in the clear. 

The rest of the fields of the IV can be derived from the packet. 

In previous sections, a sequence number that is used in replay protection has been 

alluded to. In 802.15.4, this sequence number is the five byte value constructed from the 

concatenation of the frame counter and the key counter. 

 
H.        SUMMARY 

The basic security architecture of 802.15.4 was presented. A distinction has been 

made between application-layer security offered by Zigbee, and the link-layer security 

offered by 802.15.4. The discussion includes its security services and security suites, as 

well as its mode of operation, and the specification of the access control list and 

initialization vector. Overall, 802.15.4 has a comprehensive set of services to enable 
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secure link-layer communications in sensor networks. In the next chapter, the security 

architecture of TinyOS will be presented. 
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III. SECURITY ARCHITECTURE OF TINYOS 

A. OVERVIEW 
TinyOS is a popular research platform for sensor networks, frequently used in 

conjunction with the Crossbow motes [27] as the preferred microprocessor and radio 

hardware. From its website [28], 

TinyOS is an open-source operating system designed for wireless 
embedded sensor networks. It features a component-based architecture 
which enables rapid innovation and implementation while minimizing 
code size as required by the severe memory constraints inherent in sensor 
networks. TinyOS's component library includes network protocols, 
distributed services, sensor drivers, and data acquisition tools – all of 
which can be used as-is or be further refined for a custom application. 
TinyOS's event-driven execution model enables fine-grained power 
management yet allows the scheduling flexibility made necessary by the 
unpredictable nature of wireless communication and physical world 
interfaces. 

The topology of a sensor network based on TinyOS devices depends entirely on 

the application and the networking stack used. A TinyOS application, and indeed parts of 

TinyOS itself, is programmed in an object-oriented componentized C language extension, 

called nesC [29]. For example, Surge is a popular mesh networking stack. For Surge-

based applications, the topology is similar to one based on 802.15.4, but it does not have 

an implicit hierarchy of nodes like 802.15.4 does.  

A TinyOS device is addressed by a 16-bit address, augmented with an 8-bit group 

ID. The group ID is analogous to the network address for a group of cooperating nodes. It 

allows multiple distinct groups of motes to share the same radio channel. In addition, 

TinyOS implements the Active Message (AM) system. AM types are analogous to port 

numbers in TCP/IP. Each TinyOS packet includes an 8-bit AM type in the header (see 

Figure 4).  

Early versions of TinyOS did not have security built in at all. In late 2004, the 

developers of TinyOS introduced TinySec [30], a lightweight generic link layer security 

package that developers can easily integrate into their TinyOS applications. The authors 

foresee that TinySec will cover the basic security needs of all but the most security 
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critical applications. To enable TinySec in TinyOS, the application needs to specify 

TINYSEC=true on the command line to make, or in the Makefile. Unfortunately, at 

this moment, TinySec only works in the TOSSIM simulator and the Mica and Mica2 

motes [38]. It has not yet been ported to the MicaZ and Telos motes. 

Since the main focus of this thesis is on security, henceforth, when the term 

“TinyOS” is used, it is meant to be TinyOS with TinySec enabled. 

The following paragraphs discuss the key components of the TinyOS security 

architecture. Because TinyOS is not a formal specification like 802.15.4, there is no 

official documentation on TinySec. Almost all the information discussed here is taken 

from [20,30,38] and the TinyOS source code, which can be downloaded from [28]. 

 

B. SECURITY SERVICES 
The security provided by TinyOS centers on message integrity and message 

confidentiality. As in 802.15.4, peer entity authenticity is embedded in message integrity 

through the use of a MAC. Unlike 802.15.4, however, TinyOS does not explicitly provide 

access control via an ACL.  

TinyOS supports two security options: authenticated-encryption (TinySec-AE) 

and authentication-only (TinySec-Auth). The former encrypts the data payload, then 

computes the MAC over the packet header and encrypted payload. The latter does not 

encrypt the data payload, but only computes the MAC over the packet header and data 

payload. The default security mode of a TinySec-enabled application is TinySec-Auth. 

The TinySec mode is indicated in the upper 2 bits (MSB) of the length field of the packet 

header. This modification is harmless because the maximum size of the data field in a 

TinyOS packet is 29 bytes, i.e., at most 5 bits of the length field will be used. 

It can be seen from Figure 4 that the TinyOS and the TinySec-Auth packets do 

not have a field for the source address. So it is impossible for the receiver to know where 

the packet came from. Source address is only included in the TinySec-AE packet, and 

that was primarily for the benefit of increasing the diversity of the IV. Hence, if an 

application wants to implement ACL-based access control, then it can only do so with 

TinySec-AE. 
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Figure 4: TinyOS packet formats. The byte sizes of the fields are indicated in 
parentheses. The shaded fields are protected by the MAC. Note that the Group field 
is omitted from the TinySec packet formats – group membership is implicit in the 

knowledge of the secret key [20]. 
 
C. SECURITY PRIMITIVES 

1. Message Authentication Codes (MAC) 
As in 802.15.4, TinySec uses the cipher block chaining construct, CBC-MAC 

[24], for computing and verifying MACs. The MAC is 32-bit long, and is computed over 

the headers as well as payload of the packet. The authentication key is 64 bits long. 

While the security of the MAC is directly related to the length of the MAC, the 

developers argued in that given the expected low data rate of the sensor network, a 32-bit 

MAC may provide an adequate level of security against blind forgeries. Adversaries 

cannot determine off-line if he has successfully forged a valid MAC for a particular 

message, hence any forgery attempts will be “blind”. For example, if an adversary tries to 

flood a 19.2 kb/s channel with blind forgery attempts, it may take him over 20 months to 

succeed, notwithstanding the fact that he would have effectively conducted a denial-of-

service (DoS) attack on the network and exhausted the battery of the device long ago. 
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Furthermore, sustained forgery attempts can be pre-empted through simple 

heuristics. For example, nodes can signal the base station when the rate of MAC failures 

exceeds some reasonable threshold. Such countermeasures would mitigate the need for a 

longer MAC. Unfortunately, TinyOS leaves the implementation of such countermeasures 

to the application. 

2. Encryption Scheme 
The default cipher used in TinyOS is Skipjack in 64-bit cipher block chaining 

(CBC) mode, in conjunction with an eight byte IV, using a 64-bit encryption key. RC5 is 

also feasible. These two ciphers were found to be most appropriate for software 

implementation on embedded microcontroller as far as implementation efficiency and 

performance are concerned. The TinyOS source code includes implementation for both 

Skipjack and RC5. AES was later deemed to be equally suitable as well. 

The choice of using CBC mode over stream cipher was primarily because with 

regards to semantic security, CBC mode is believed to degrade more gracefully when IV 

reuse occurs. This is an important consideration for TinyOS, because between two 

communicating nodes, the IV could be as small as a 16-bit value. If the IV is long enough 

so that it is not expected to repeat in a long time, then a stream cipher like AES-CTR 

performs much better. An additional advantage is that the same block cipher code can be 

used for the message authentication code (CBC-MAC), thus saving considerable code 

space. 

3. Initialization Vectors (IV) 
As in 802.15.4, the encryption scheme uses an IV to achieve semantic security. 

The format of the IV is shown in Figure 4a. The first four bytes of the IV are borrowed 

from the existing header fields of the TinyOS packet: the destination address, the AM 

type, and the length of the packet. The last four bytes are comprised of the source address 

and a 16-bit counter. The counter is initialized to zero, then incremented by one after 

every message sent.  

The last four bytes of the IV is chosen in this way to maximize the number of 

packets each node can send before there is a global repetition of the IV. That is, each 

node can send at least 216 packets before IV reuse occurs. For a network of n nodes, this 

results in n.216 packets before IV reuse occurs in the network.  
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The developers felt that this IV design should provide adequate security. Since 

sensor networks must conserve power to be long-lived, the average packet rate in most 

sensor networks will be very low – on the order of one packet per minute. At one packet 

per minute, IV reuse will not occur for over 45 days.  In addition, the selection of CBC 

encryption mode further mitigates the risk of information leakage when IV reuse occurs. 

In short, information may only leak when one node sends two different packets with the 

same first eight bytes and IV, to the same destination, with the same AM type, and of the 

same length. 

 

D. SUMMARY 
The basic security design of the TinyOS, or more specifically TinySec, was 

presented. The security provided by TinyOS centers on message integrity and message 

confidentiality. Peer entity authenticity is embedded in message integrity through the use 

of a MAC. On the other hand, TinyOS does not explicitly provide access control via an 

ACL. There are 2 security modes: authenticated-encryption, and authenticated only. 

Security primitives such as message authentication codes, encryption scheme and 

initialization vector has also been discussed. With the background information on 

802.15.4 and TinyOS now in place, the next chapter will discuss their similarities, 

differences, strength and limitations. 
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IV. ANALYSIS OF 802.15.4 AND TINYOS SECURITY 

In this chapter, the similarities and differences between the security designs of 

802.15.4 and TinyOS will be examined, and their strength and limitations discussed. 

Where applicable, lessons learned from another wireless standard,  IEEE 802.11 Wireless 

LAN [31] (802.11), will be applied to assess the adequacies of 802.15.4 and TinyOS 

security. 

 

A. MODULARITY VS OPTIMIZATION 
The objectives of 802.15.4 and TinyOS are very similar: ease of deployment, 

reliability and robustness, short-range operations, extremely low cost, and long battery 

life. But they are quite different in the way they are architected. The contrast can be 

summarized as Modularity versus Optimization. 

802.15.4 follows the tried-and-tested layered protocol approach of the seven-layer 

OSI model. 802.15.4 specifies the lower 2 layers, namely physical and media access 

control. In this regard, it is very similar to 802.11. The inherent modularity of this model 

allows powerful higher layer specifications like Zigbee to export their own services, 

which applications can easily take advantage of. The downside is added code complexity, 

memory overhead, and processing delay in the handling of packets as they traverse the 

layers – a luxury that some sensor network applications can ill afford. 

On the other hand, TinyOS resembles more of a toolkit or library for fast 

prototyping of sensor network applications. The OS is built-in to abstract the underlying 

hardware and support an event-driven framework. Unlike 802.15.4, TinyOS is tailor-

made for sensor networks, and targets devices with limited memory and power. Many of 

the design decisions were made under the constraints of significant resource limitations. 

Betweem the two, TinyOS would easily offer a more optimized and energy efficient 

sensor network solution. The cost to pay for this optimization is the loss of some 

implementation transparency, the ability to modularize the solution, and perhaps some 

degree of assurances especially for applications where security is critical. 
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It should be noted that 802.15.4 is intended for hardware implementation on a 

dedicated radio chip, while TinyOS does not require dedicated hardware. The developers 

of TinyOS do not see this as a handicap. They claim that with sufficient engineering 

efforts, it is possible to encrypt and authenticate all communications entirely in software 

without major performance degradation. This result is a testament to the optimization 

possible in TinyOS. 

As of today, the only radio chip that claims to be fully 802.15.4 compliant is the 

Chipcon CC2420 (CC2420) [32,33], currently used in Crossbow’s MicaZ and the TelosB 

motes. It operates in the 2.4 GHz frequency band with a data rate of 250 kbps. 

 

B. KEYING MECHANISM AND IV 
Neither 802.15.4 nor TinyOS addresses the issue of the keying, that is the manner 

in which keys are generated, distributed, and securely stored (or destroyed). Section 

5.4.6.1 in [11] states, 

the security mechanisms in this standard are symmetric-key based using 
keys provided by higher layer processes. The management and 
establishment of these keys is the responsibility of the implementer. The 
security provided by these mechanisms assume[s] the keys are generated, 
transmitted, and stored in a secure manner. 

Given that keying is generally considered a higher layer service, this position is 

understandable. But keying has a critical inter-dependency with one aspect of link layer 

security: the IV. Recall that to achieve semantic security, a node must not use the same 

IV with the same key for encryption. This is especially true when the IV is used with a 

stream ciphers like AES-CTR used by 802.15.4, or RC4 used by 802.11. 802.11 used a 

woefully inadequate 24-bit IV. On a network with a moderate load, this IV space was 

exhausted within a few hours. When there are multiple hosts within the wireless network, 

the situation is exacerbated since they all share the same encryption key.  

Both 802.15.4 and TinyOS learned this lesson: 802.15.4 uses a much longer IV, 

up to 40 bits. While TinyOS limits itself to a shorter IV, it tries to mitigate the risk of 

information leakage through the use of CBC encryption mode rather than naively use a 

stream cipher. 
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Table 2 illustrates the theoretical IV reuse periods for TinyOS and 802.15.4 

between 2 communicating nodes for the various data rates shown. The packet sizes 

chosen are the maximum packet sizes, so that if the actual packets are smaller, then the 

IV reuse periods will be shorter than those shown. The IV length of 40 bits for 802.15.4 

assumes both the frame counter (4 bytes) and the key counter (1 byte) are in use. 

  

IV reuse period 

  

Data 
rate 

(kb/s) 

Packet 
size 

(bytes) 

Maximum 
throughput 

(pkt/s) 
IV 

length 
100% 

duty cycle 
At 1 

pkt/min 
Mica2[34] 38.4 120 9.1 min TinyOS MicaZ[35] 250 

41 
780 

16 bits 
1.4 min 

45.5 
days 

20 20 1743 yrs 
40 40 872 yrs 802.15.4 
250 

128 

250 

40 bits 

139 yrs 

>2m yrs 

Table 2: IV reuse periods for TinyOS and 802.15.4 between two 
communicating nodes. 

 

It can be seen from the table that in the worse case, i.e., 100% duty cycle, it will 

take a matter of minutes in TinyOS for IV reuse to occur, while it will take hundreds of 

years for 802.15.4. Even in the optimistic case of one packet per minute, it will take 

slightly more than 45 days in TinyOS for IV reuse to occur, while it will take more than 2 

million years for 802.15.4. 

This implies that for TinyOS to avoid IV reuse, a new key will have to be 

established every 45 days. In practice, one may re-key well before that period runs out. 

On the other hand, re-keying may not even be an issue for 802.15.4, since the IV reuse 

period will be longer than the lifetime of almost all applications.  

It is stated here that the IV length of TinyOS is 16 bits. This warrants some 

discussion. On paper, TinyOS states that the IV is 8 bytes (see Figure 4a). But between 

two communicating nodes, only the last 2 bytes will be constantly variable. The 

destination address, source address and AM type are most likely fixed. Theoretically, the 

length field may also be variable, but most sensory messages will be fixed length, or have 

low variances in their lengths. Hence, it can be concluded that the IV length is effectively 

only 16 bits. 
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Even if a constantly varying length field is taken into consideration, it will only 

add five bits to the IV, not eight bits, because the maximum data field size is 29 bytes. 

This translates into a 32 times increase in the IV reuse period. For the optimistic case of 

one packet per second, it becomes a more respectable 4 years. But in the worst case, it is 

still only in the order of hours. 

To be fair, it was a conscious design decision by the developers of TinySec to 

choose a 16-bit IV, and accept that IV reuse will occur, because a longer IV was deemed 

to add unacceptable overhead to the TinyOS packet size. Thus, CBC mode was 

specifically chosen because of its robustness to information leakage when IVs repeat. In 

short, information only leaks when two packets with the same first 8 bytes and IV are 

sent, assuming the rest of the fields are identical.  

In summary, the long IV length of 802.15.4 means that the IV is unlikely to be 

exhausted in the lifetime of any application. Hence 802.15.4 applications can get away 

with not having to contend with re-keying issues. On the other hand, the short IV length 

combined with CBC mode may be sufficient security for most TinyOS applications. For 

applications requiring higher assurances, however, either a robust re-keying mechanism 

must be used, or TinyOS’s IV must be customized to a longer length. 

 

C. ACCESS CONTROL 
802.11 did not specify a mechanism for access control within the wireless 

network. Most vendors choose to implement Ethernet address-based access control list at 

the access point. Unfortunately, the Ethernet address alone does not provide a strong 

enough identity. Attackers can sniff Ethernet addresses wirelessly and then spoof them 

via software [36] to impersonate legitimate clients. Encrypting the wireless traffic via a 

shared key may exclude adversaries without the key, but once the key is compromised, 

the adversary will again be able to impersonate any legitimate client. 

Access control is an important consideration in sensor networks, because sensor 

network nodes are susceptible to physical capture. Therefore if the access control of the 

network is based on a single shared key, then once a node is captured and the key 

compromised, the access control for the entire network fails. The remaining sensor nodes 
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may have to be recovered and securely re-keyed with a new shared key – not always a 

feasible course of action. On the other hand, if the access control is based on pair-wise 

keys, then capturing a node will just violate the access control relationship with its peers, 

not the entire network. If a node is suspected of being captured, the network can simply 

instruct the captured node’s immediate peers to expel the node from their access control 

list. There is no need to re-key the entire network. Hence, access control via an ACL with 

pair-wise keying should be the preferred access control mechanism for sensor networks. 

TinyOS enforces access control with a MAC computed from a network-wide 

shared key. On the other hand, 802.15.4 can potentially offer very fine-grained access 

control. Each device can hold up to 255 entries in its ACL table, one for each trusted 

peer. Each trust relationship can have its individual security settings; authenticate-only, 

encrypt-only, or authenticate-encrypt. 

An interesting scenario arises when an FFD is physically captured. In this case, an 

attacker can make use of the captured FFD to impersonate as a PAN coordinator, thus 

potentially routing all traffic through it. One way to mitigate this threat is to ensure that 

the edge devices that are susceptible to physical capture are only RFDs. Another way is 

to employ countermeasures to detect unauthorized or duplicate PAN coordinators. 

It must be pointed out, however, that the 802.15.4 specification does not make it 

mandatory to support the full 255 entries in the ACL table, and in the manner that the 

specification describes. Figure 5 shows the CC2420 RAM memory map. It can be seen 

that the CC2420 does not have an ACL table. Instead, it has 2 keys. The application may 

choose to use one for transmit and the other for receive, or use a single key for both 

transmit and receive. These keys do not have an address associated with them. Therefore, 

these keys are more akin to the default ACL entry in the 802.15.4 specifications, and can 

only effectively support group keying. 
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Figure 5: Chipcon CC2420 RAM memory map. 
Source: [From 33] 

 

D. MESSAGE INTEGRITY 
In 802.11, message integrity is only protected by a CRC-32 checksum, even when 

WEP is turn on. Researchers have shown that it is possible to modify WEP encrypted 

packets in transit without detection, because the CRC checksum is an unkeyed function 

of the message [37]. The fix is to use a cryptographically secure MAC. 

Both 802.15.4 and TinyOS uses a MAC to protect the integrity of their encrypted 

messages. It is an accepted wisdom that the security of the MAC is directly related to the 

length of the MAC. 802.15.4 applications can use up to 128-bit MAC. CC2420 supports 

128-bit MAC only. This is clearly superior to TinyOS’s 32-bit MAC. TinyOS 

applications requiring higher assurances should implement countermeasures to prevent an 

attacker from making too many blind forgery attempts. 
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E. ENCRYPTION SCHEMES 
The notable difference between the encryption schemes of 802.15.4 and TinyOS, 

is that 802.15.4 uses a stream cipher, AES-CTR, and a long IV to avoid the issue of IV 

reuse, while TinyOS uses a 64-bit block cipher in CBC mode with a shorter IV to 

mitigate the risk of information leakage associated with IV reuse. The key length of AES 

can be up to 128 bits long, and CC2420 has hardware cryptographic support for 128-bit 

keys only. It is reasonable to conclude that 802.15.4 should provide a higher degree of 

assurance as far as message confidentiality is concerned. 

Note that TinyOS does not have an encrypt-only mode. This is no great loss. 

From the discussion in the previous section, the integrity of an encrypted packet cannot 

be guaranteed by its CRC checksum. A corollary is that encryption should not be used 

without a MAC if its integrity needs to be guaranteed. Hence, TinyOS only supports 

authenticate-only and authenticate-encrypt. Researchers have cautioned against using 

802.15.4’s AES-CTR security suite [9]. They argued that a simple, single-packet denial-

of-service (DoS) attack can be mounted on a 802.15.4 network that uses the AES-CTR 

security suite with replay protection enabled. 

 

F. REPLAY PROTECTION 
TinyOS explicitly omitted replay protection in the security architecture. The main 

reason is to avoid the extra memory needed to keep the sequence numbers for every node 

that a receiver communicates with. Another reason is that the developers believe that 

replay protection is better and more efficiently handled by the application, which has 

more intimate knowledge of the overall topology and communications pattern of the 

network. 

It is generally a good idea to have replay protection in link layer security. 802.11 

did not have replay protection; hence, messages could be intercepted and replayed 

without modification. The result can be denial-of-service attacks, or it can be used as a 

launching pad for other attacks, like the man-in-the-middle attacks. 

802.15.4 specifies optional replay protection. On paper, peer-to-peer replay 

protection should work very well under the specification. But researchers have found that 
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network shared keying using the default ACL entry to be incompatible with replay 

protection. This is because the receiver can only keep a single sequence number in the 

default ACL entry as the high water mark while receiving packets from many sources, 

each maintaining their own sequence numbers. 

It must be pointed out that, as can be seen from Figure 5, CC2420 does not have 

provision for a replay counter in its RAM memory space. So any replay protection will 

have to be implemented in the application space – just like TinyOS. Therefore, one can 

conclude that replay protection is currently absent from today’s sensor network link layer 

security, until another radio chip comes along that supports this important feature. 

 

G. SUMMARY 
The security of 802.15.4 and TinyOS was analyzed and compared in five broad 

categories: IV length, access control, message integrity, encryption scheme, and replay 

protection. In general, 802.15.4 offers higher assurance in terms of cryptographic 

strength, message integrity, and information leakage from IV reuse. TinyOS applications 

will need robust re-keying support and countermeasures against forgery attempts to make 

up the difference.  But they both lack effective peer-level access control and replay 

protection – both important aspects of sensor network security. 

To validate this security analysis, a sensor network sniffer is needed. A sniffer is 

the quintessential tool for modern day network and security analysis. But such a tool is 

presently lacking in today’s sensor network development kits. In the following chapters, 

the design and implementation of a TinyOS sensor network sniffer will be presented. 
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V. ANATOMY OF THE TINYOS SNIFFER 

In the previous chapters, the link-layer security design of TinyOS and 802.15.4 

was described and analyzed. To validate the analysis, we need to use a sensor network 

sniffer. A sniffer is the quintessential tool for network analysis. But such a tool is 

presently lacking in today’s sensor network development kits. In the following chapters, 

we will present the design and implementation of a TinyOS sensor network sniffer. The 

current design is based on existing sensor network hardware and software components to 

enable a low-cost sniffer implementation. 

To understand how the sniffer works, it is necessary to first understand how 

TinyOS handles incoming network messages, and hence the hardware and software 

components necessary to implement such a sniffer. 

 

A. TINYOS FILTERING MECHANISM 
A TinyOS packet has the format shown in Figure 4c. The fields of interest are the 

following: 

1. Destination Address 
The destination address refers to the 16-bit node address of the mote. It is 

programmed into the mote along with the TinyOS application when the following 

command is issued: 
make <platform>  re|install,<n> <programmer>,<port> 

where <n> is the 16-bit node address. The address 0 is typically reserved for the 

base station mote. 

2. Group ID 
The group ID is analogous to the network address for a group of cooperating 

motes. It allows multiple distinct groups of motes to share the same radio channel. The 

group ID can be set by defining the preprocessor symbol DEFAULT_LOCAL_GROUP. For 

example, this symbol can be located in the MakeXbowlocal file in the tinyos-

1.x/contrib/xbow/apps directory. This file is automatically included in the 

compilation of almost all TinyOS programs in the tinyos-1.x/contrib/xbow/apps 

directory. The default group ID is 0x7D. 
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3. AM Type 
TinyOS implements the Active Message (AM) system. AM types are analogous 

to port numbers in TCP/IP. Different applications may use different AM types. For 

example, for the Surge_Reliable application, the AM type is defined in the Surge.h 

header file: 
 
enum { 
  AM_SURGEMSG = 17 
}; 
 

TinyOS automatically filters incoming packets by matching the destination 

address in the packet header with the node address of the mote. If the node address is 0, 

then TinyOS skips this step – the mote is effectively operating in promiscuous mode. If 

the destination address matches the node address, then the entire packet, including the 

header, is passed on to the application. It is the application’s responsibility to handle the 

group ID and AM fields. 

In summary, a TinyOS sniffer can simply be a mote programmed with a node 

address of 0, and an application that ignores the group ID and AM fields (assuming no a-

priori knowledge of either of them). 

 

B. COMPONENTS OF THE SNIFFER 
The TinyOS sniffer is based on readily available hardware and software 

components, and a Java-based application analogous to tcpdump [39]. 

1. Hardware components 
The hardware platform is simply an off-the-shelf mote connected to a PC. The 

traditional connection is via the MIB510 programming board to a PC’s serial port. The 

TelosB mote offers a more convenient on-board USB connector that plugs directly into 

the PC for both the power and serial connections; hence, a more compact solution (see 

Figure 6). Connecting via the MIB510 would require not only an external serial cable, but 

also an external power supply for the MIB510 programming board. However, the 

message format forwarded by a Mica, MicaZ, or TelosB mote is quite different. So the 

application will have to decode the message appropriately according to the hardware 

used. 
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Figure 6 TelosB mote connected to the USB port of a PC. 

 
2. Software Components  
The software consists of one TinyOS application, TransparentBase, and two Java 

applications, SerialForwarder and Sniffer. 

TransparentBase is one of the many examples of TinyOS applications that can be 

found in the tinyos-1.x/apps directory. It acts as a simple bidirectional bridge between 

the serial and radio links. TransparentBase has the additional property that it ignores the 

Group ID. Programming the TelosB mote with TransparentBase and a node address of 0 

gives a promiscuous receiver receiving TinyOS packets from the MicaZ sensor network, 

and forwarding them to the PC via the serial link. So long as no data is sent to the serial 

link, TransparentBase will also be a unidirectional passive receiver. 

As mentioned earlier, it is the responsibility of the TinyOS application to handle 

the filtering of group ID and AM type. TransparentBase ignores both the group ID and 

AM type fields, so Group ID and AM filtering is not a problem. 

At this point, this is pretty much have a functional TinyOS sniffer mote. Next, an 

application is needed to communicate with the mote via the serial port. In TinyOS world, 

the standard way to this is to use SerialForwarder. 

SerialForwarder is a Java application that can be found in the tinyos 

/tools/java/net/tinyos directory. SerialForwarder runs on the PC and instantiates a 

network server that forwards TinyOS packets read from the serial port to a network port, 
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and vice versa. Typically, it is used to allow applications to communicate with the mote 

via a network interface instead of a serial interface – this is especially useful for 

distributed network clients, or Java clients like Surge. 

The final piece of the puzzle is an application that reads the packet from Serial 

Forwarder, extracts the protocol and application information, and outputs the information 

in a usable form. There is no such tool in current TinyOS development kits. For this 

reason, the Java application Sniffer has been developed. The design and implementation 

of Sniffer will be discussed in the next chapter. 

Figure 7  illustrates the block diagram of the sniffer. 

 

Figure 7 Block diagram of TinyOS Sniffer. 
 

C. SUMMARY 
The TinyOS packet filtering mechanism was discussed, and explained how it can 

be used for the purpose of frame capture. The necessary hardware and software 

components of a TinyOS sniffer was also presented. However, an application, 

Sniffer.java, is still needed that reads the packet from Serial Forwarder, extracts the 

protocol and application information, and outputs the information in a usable form. This 

will be discussed in the next chapter 
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VI. DESIGN AND IMPLEMENTATION OF THE SNIFFER 
APPLICATION 

In addition to the analysis of the security architectures of 802.15.4 and TinyOS, 

the main development effort in this thesis is the design and implementation of Sniffer. 

This is a multi-threaded, tcpdump-like application that reads raw packets from Serial 

Forwarder, extracts the protocol and application layer information, and outputs it in a 

usable form. 

The developmental paradigm of TinyOS is that mote applications running on the 

motes are written in nesC, while user applications running on the PC are written in Java. 

Keeping in line with this paradigm, Sniffer is also written in Java. 

The remainder of this chapter explains the Sniffer application in more details. To 

follow the discussion, some working knowledge of Java is assumed, e.g. how to run Java 

programs, what are Java classes etc.  

 

A. USAGE 
Sniffer is a command line tool with usage as follows: 

 
usage: java Sniffer [-m mica|micaz|telos] [-h host] [-ob filename] 

[-?] [-p port] [-l filename] [-oc filename] 
-m <mica|micaz|telos> Specifies TOS message format when auto-

detection fails. 
-?    Print this help text. 
-h <host> The host running Serial Forwarder. Can be 

a valid hostname or IP address. Default is 
local host. 

-l <filename>           Log screen output to file. 
-ob <filename>          Output to file in raw binary format. 
-oc <filename>          Output to file in CSV format. 
-p <port> Network port used by Serial Forwarder. 

Default is 9001. 

 

The meaning of some of these options will become clear as the implementation of 

the program is explained. 
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Figure 8 Process flow chart for Sniffer. 

 
B. PROCESS FLOW 

The process flow of Sniffer is depicted in Figure 8. The program first parses the 

command line to determine the user specified options, and exits upon detecting invalid 

options, or if “-?” is specified to display the help text. Once the options are set, the 

program attempts to instantiate a PacketServer class and initialize the Writer class with 

the registered outputs. If either of these fails, for example due to a failure to communicate 

with a SerialForwarder source, or a file I/O error, the program exits. 

At this point, the program is ready to enter into its main processing loop. First, it 

requests a packet from PacketServer. Then it passes the packet to the Protocol and AM 
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classes in sequence to process the protocol and application layer information respectively. 

Finally, the processed packet is passed to the Writer class for output to the screen, and is 

optionally written to file in a variety of formats if the user so specifies. The process loop 

continues indefinitely until the user terminates with Ctrl-C. 

 

C. DESCRIPTION OF THE MAJOR JAVA CLASSES 
The Java classes that are implemented for Sniffer, and their relationships to each 

other, are depicted by the unified modeling language (UML) diagram in Figure 9. Note 

two exceptions. Firstly, the Thread super-class is a system provided class. It is included 

in the illustration to highlight the fact that Sniffer is a multi-threaded application. 

Secondly, the CLI utility library from the Apache Jakarta Commons project [40], not 

shown in the illustration, is used to provide the API for working with command line 

arguments and options. The user has to ensure that the CLI library is located in the Java 

CLASSPATH. 

The Sniffer class contains the main function of Sniffer. This is the entry point of 

the program, and implements the process flow illustrated in Figure 8. In addition, it keeps 

track of packets received as well as packets with protocol processing errors. This 

information is displayed on the screen when the user terminates the program with Ctrl-C. 

It is useful to look at the UML diagram in the following way. The leftmost branch 

consisting of the PacketServer class and its children comprise the input subsystem. The 

middle branches consisting of the Protocol and AM classes comprise the processing 

subsystem, while the rightmost branch consisting of the Writer class and its children 

comprise the output subsystem. Underpinning these subsystems is a collection of data 

classes called Packet and Field. 

The data classes, and the input, processing and output subsystems are now 

discussed in more details. 
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Figure 9 UML diagram of Sniffer. 
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1. Data Classes 
In order to capture the representation of a packet accurately as it is processed 

through the program, Sniffer defines a Field class and a Packet class. A Field is simply 

some value with an associated name. A Packet is represented as a triplet of header, 

payload data unit (PDU), and trailer. It may also have a description string. The 

description is useful for displaying human-readable packet information on the screen. 

The  header and trailer are defined as linked lists of Fields. Perhaps more 

intriguingly, the PDU is itself defined as a Packet. The Packet class is therefore a nested 

class. This allows packets to be encapsulated inside another packet easily. 

If the PDU is null, then this Packet is the uppermost packet, and all the 

information about the packet is stored in the header. In OSI parlance, an upper layer 

payload is encapsulated inside a lower layer protocol. So uppermost, in this case, means 

the higher layer payload. The current processing system should only concern itself with 

the uppermost packet and payload.  

In this case, there are two possibilities. On one hand, the header list may consist 

of just a single field containing the data payload waiting to be processed. On the other 

hand, the header can be null, indicating that there is no more data to be process, i.e. this 

packet has been fully resolved. 

Hence, packet protocol processing works as follows:  

1) Use the getUppermostPacket method to get the uppermost packet. 

2) Use the getUppermostPayload method to get the uppermost payload to be 

processed. 

3) Process the payload accordingly to derive new header, trailer and PDU 

information. 

4) Replace the uppermost packet's header, PDU and trailer attributes with the new 

information. The new PDU will now become the new uppermost packet to the 

next protocol layer. 
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2. Input Subsystem 
The heart of the input subsystem is the ByteServer class. A ByteServer object is 

instantiated by PacketServer, when it is in turn instantiated by the Sniffer class. 

ByteServer is a separate thread of execution from the main Sniffer class. This allows 

input from the sniffer mote to be received in the most responsive way, independent from 

the execution of the rest of the program. 

The ByteServer receives data from the sniffer mote through objects subclassed 

from the Source class. Currently, only the SFSource (or Serial Forwarder Source) class is 

implemented. However, it is perfectly possible to implement other sources if necessary, 

for example a SerialSource class that communicates with the mote directly via serial port 

communications, or a file source to read data previously archived in a file. It shall be seen 

later that additional sources can be easily created and added to the system. By default, 

Serial Forwarder is assumed to be running on the local host, port 9001. If this is not the 

case, then the user can specify a host and port using the “-h” and “-p” options. 

Data read from the source is stored in a First-In-First-Out (FIFO) buffer. In the 

current implementation, when the buffer is full, further packet data are dropped, instead 

of overriding the earliest received data. 

The Sniffer class does not talk to the ByteServer directly, instead it instantiates 

and requests packets from the PacketServer class. PacketServer provides a packet-level 

input abstraction to Sniffer. PacketServer makes requests for received data from 

ByteServer, and then packages the data bytes into a Packet object as its payload. At the 

same time, PacketServer adds a timestamp to this Packet’s header. This timestamp 

information allows for temporal analysis of the packets. Strictly speaking, the timestamp 

does not represent the time the packet is received by the sniffer mote, but the time 

PacketServer receives the data from ByteServer. 

3. Processing Subsystem 
Packet objects received from the input subsystem are passed to the processing 

subsystem, to extract protocol and application layer information. Packet objects are 

passed to the Protocol class and then the AM class in sequence. 
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The first thing that the Protocol class does is to see if it needs to determine the 

message format. TinyOS messages can have 4 different formats, depending on the mote 

used [41]:  

1) The original TOS_Msg format used on mica,mica2, and mica2dot, 

2) the IEEE802.15.4 format used on telos family motes, 

3) the modified TOS_Msg format used on micaz motes, and  

4) the Infineon’s eyesIFX platform [42]. 

The Packet class has a static attribute, msgFormat, that is used to identify the 

format. The Protocol class first checks if this attribute is set. If it has not been set, the 

Protocol class applies some heuristics to try to guess the message format, and set it to the 

appropriate value. If the heuristics fail, then the message format is unknown, and no 

further processing will be done on the packet. It is assumed that a given sensor networks 

is homogenous, so the message format should be consistent. So the guessing of the 

message format is only done once. However, the heuristic rules are not foolproof by any 

means, so the fallback is for the user to specify the message format on the command line 

via the “-m” option. Once the message format is known, the Protocol class performs the 

appropriate protocol processing on the packet. 

Once protocol processing is completed, the packet object is passed to the AM 

class for application processing. Recall that the AM type of a TinyOS message is 

analogous to the port number in TCP/IP. So it is conceivable that in a given sensor 

network, there can be more than one AM type. The AM class maintains a list of AM 

handlers. The AM class iterates through the list, passing the packet object to each AM 

handler. Once an AM handler signals that it has handled the AM type, application 

processing is complete. 

Currently, the only AM handler implemented is the AMCountMsgHandler class, 

for the test application CountRadio. But it is easy to create and add AM handlers. 

4. Output Subsystem 
The Writer class is responsible for writing the packet information to a variety of 

output channels. One of the features of the output subsystem is that packet information 
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can be written to more than one channel simultaneously. Thus the user has the maximum 

flexibility in storing packet information. 

The Writer class maintains a list of Output objects. The ScreenOutput object is 

always available. At the same time, the user can choose to enable other output channels 

using command line options. Currently, the following FileOutput objects are available: 

logging the screen output to file (“-l”), writing to a binary file (“-ob”), and writing to a 

comma separated value (CSV) file (“-oc”). The CSV file, for example, is readily 

imported into Microsoft Excel for data analysis purposes. The binary file, on the other 

hand, provides a more efficient format to store packet information. 

When an Output object is instantiated, its run method is also immediately 

registered with the JVM runtime as a shutdown hook. This is a little known feature of 

Java that was recently added to allow programs to perform last minute clean-ups before 

JVM termination. In this case, the shutdown hooks enable the ScreenOutput object to 

print out packet accounting information, and the FileOutput objects to flush their I/O 

buffers and close the file properly. 

Again, if a particular output channel is not available, it can be easily created and 

added to the system. 

 

D. EXTENDING SNIFFER 
The Sniffer program has been designed so that it is easy to create and add 

functionalities to the various subsystem, without affecting how the rest of the system 

works. Part of the reason for this capability lies in the object oriented nature of Java. In 

general, adding functionality to Sniffer can be done in two steps: subclassing an existing 

class, then making the new class known to the Sniffer at the appropriate code locations. 

1. Adding Input Sources 
New input sources should subclass the Source class, or any of its subclasses, and 

override the open, close, and read methods where necessary.  

Within the main Sniffer class, a new command line option may be specified so 

that the user can choose this input source instead of the default SFSource. Then inside the 

code that checks for this option in parseArgs, the new Source object must be instantiated, 
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and assigned it to the source static variable. ByteServer will automatically interface with 

the new input source. 

2. Adding AM Handlers 
Handlers for new AM types should subclass the AMHandler class, and override 

the processAM method. 

The new AM handler class must then register with the AM class within the 

following code static segment of AM.java: 
 
/*   
 * Static code block. 
 * This is where new AM handlers are registered. 
 */ 	
  
static {	
   

appsList.add(new AMCountMsgHandler ());	
 
// Add new AM handlers here, like above. 

}	
 
 
3. Adding output channels 
New output channels should subclass the Output class, and override the open, 

close, write, and run methods where necessary. 

Similar to the input subsystem, within the main Sniffer class, a new command line 

option may be specified so that the user can choose to enable this new output channel. 

Then inside the code that checks for this option in parseArgs, the new Output object must 

be instantiated, and added to Writer’s list of Output objects using the addOutput method. 

Packet information will then be automatically written to the output channel. 

 

E. TEST AND EVALUATION 
The sniffing functionality of the TinyOS sniffer was tested and evaluated using a 

simple test application. For the purpose of this study, the target sensor network is a pair 

of MicaZ motes running the CountRadio application. The sniffer consists of a TelosB 

mote connected to a PC. 

For convenience, it was assumed that the operating radio channel was known. It is 

not difficult to find out anyway – a simple sequential scan through the radio frequency 

channels, or a spectrum analyzer, will easily reveal the operating radio channel. 



42 

1. CountRadio application 
CountRadio is an example application that can be found under the tinyos/apps/ 

directory. From its README.CountRadio file: 

“CountRadio is a simple led/radio count program.  The default application 
built from this directory is CountDual. CountDual either sends a count 
over the radio if the node address is equal to 1, or displays a count 
received over the radio otherwise.” 

The transmitting mote broadcasts a packet every 200 milliseconds, or five packets 

per second. The payload of the packet has the format defined in the CountMsg.h file: 
enum 
{ 
  AM_COUNT_MSG = 4, 
}; 
 
typedef struct 
{ 
  uint16_t n; 
  uint16_t src; 
} CountMsg_t;  

 

Hence the payload is of constant four byte length, where the first two bytes 

represent a monotonically increasing sequence number, followed by a constant source 

address which should be 1. Therefore, this provides a very predictable data source to 

verify the correctness of our Sniffer program. 

2. Output 
With the motes up and running, Sniffer is started from the command line with no 

additional options. Figure 10 shows the captured screen output of Sniffer. Each line 

represents one packet. The format of the output is designed to mimic tcpdump to a certain 

extent. It has the following form: 
 

<Timestamp> <Protocol> <Grp>.<Dest>.<AM> (<Len>) [<Payload>] <CRC> 

 

The timestamp is in the 24-hour notation, with up to millisecond precision. The 

protocol is denoted as “TOS”, meaning TinyOS with TinySec disabled. The group ID, 

destination address and AM types are grouped into a “dotted” decimal notation that 

resembles an IP address with its port number.  
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Then using the CSV file output of Sniffer, and importing into Excel, it can be 

further verified that the sequence number N runs in consecutive order, so no packets were 

missed.  

 

Figure 10 Captured screen output of Sniffer sniffing on 2 motes running the 
CountRadio application. The sniffer was started after the motes. Hence the lower 
packet count. 
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3. Observations and Recommendations 
While it would appear that the Sniffer is functioning correctly, the following 

observations are made. 

Timestamp: The first observation is that the intervals between sequential 

packets are not exactly 200 milliseconds, give or take some acceptable deviations. In fact, 

just from the snapshot shown in Figure 10 alone, the interval can be as short as four 

milliseconds, to as large as 400 milliseconds. In a network where the data rate is on the 

order of tens to hundreds of kilobits per second, an error of 400 milliseconds may be 

enough to skew certain traffic analysis. 

The inaccuracy of the timestamp is mainly due to the fact that the sniffer mote 

does not currently have the ability to affix timestamps to sniffed packets as it receives 

them. Instead, the timestamp is only added at the PacketServer level. The fact that the 

Source object is a network interface, while convenient from programming point of view, 

inevitably adds further errors to the timestamp. There is clearly room for improvement.  

CRC: The second, and more important, observation is that CRC information is 

missing. Unfortunately, the point along the TinyOS chain where the CRC information is 

lost could not be determined. But it does point out that the current implementation is 

incomplete, since it cannot provide the packet in its entirety for analysis. 

To address these deficiencies, the Sniffer program should be more tightly 

integrated with the mote hardware. One possibility is to implement a Source object that 

interfaces with the mote directly via the serial link without any mediation. In this way, 

the Source object can also be responsible to affix a timestamp on the received packets for 

a higher degree of accuracy in the timestamp. 

 

F. SUMMARY 
The design and implementation of the Sniffer program has been described in 

detail, including its usage, process flow, and the functions of the major Java classes. It 

has also been explained how new input sources, application handlers, and output channels 

can be easily created and added to the program in a very modular way.  
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The testing of the Sniffer program indicates that there are deficiencies in its 

implementation: firstly, the timestamp has too much deviation. Secondly, the Sniffer does 

not have access to the sniffed packet in its entirety. A tighter integration of the Sniffer 

program and the mote hardware should be able to address these deficiencies. 
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VII. CONCLUSION 

TinyOS and IEEE 802.15.4 are the two dominant implementations of sensor 

networks today. TinyOS targets devices where energy and computational power are the 

significant resource constraints. 802.15.4 takes a more modular approach to its design, 

and is suited for a variety of devices and applications. Currently TinyOS is more popular 

in the sensor network community, but that is probably because it has been around longer. 

With 802.15.4 being formally adopted as a standard recently, it should not be long before 

802.15.4 starts to take root in the sensor network community. 

This thesis examined the security architectures of TinyOS and 802.15.4. It found 

that 802.15.4 generally offers higher assurances in terms of cryptographic strength, 

message integrity, and information leakage from IV reuse. TinyOS applications will need 

robust re-keying support and countermeasures against forgery attempts to make up the 

difference.  But they both lack effective peer-level access control and replay protection – 

both important aspects of sensor network security.  

For resource-limited sensor networks, TinyOS is still the better choice. For 

military applications where security and performance needs dominate, it is envisioned 

that a hybrid TinyOS/802.15.4 system would be ideal. Given the open source nature of 

the TinyOS project, it is conceivable that TinyOS can be adapted to leverage on 

802.15.4-compliant hardware for its link layer security, instead of relying on TinySec. 

TinyOS packets can be encapsulated inside 802.15.4 frames, just like TCP/IP packets are 

encapsulated inside 802.11 frames. In this way, sensor network applications can be built 

that enjoy the best of both worlds – the mature and optimized environment of TinyOS, 

and the superior link layer security offered by 802.15.4. 

As a tool for validating the above security analysis and also to perform further 

analysis, the design and implementation of a TinyOS sniffer application was presented. A 

sniffer is the quintessential tool for modern day network analysis. But such a tool is 

presently lacking in today’s sensor network development kits. The current design is based 

on existing sensor network hardware and software components to enable a low-cost 
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sniffer implementation. The sniffer has also been designed to be easily extensible in 

terms of functionalities. 

The following topics are the recommended for further research: 

• Improve the functionality of the TinyOS sniffer. Areas of improvement 

include tighter integration of the Sniffer with the mote hardware, and 

additional output modes for packet data such as the extensible markup 

language (XML) format. 

• Integrate TinyOS with 802.15.4-compliant hardware for high assurance 

applications, with support for peer-level access control and replay protection. 
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